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We propose to survey in this paper different routes to chaos arising in nonlinear

dynamic systems emphasizing where appropriate the connection with the intriguing
phenomenon of turbulence in a viscous fluid. The onset of turbulence displays, in
particular, clear chaotic characteristics. On the other hand, fully developed
turbulence cannot be analysed presently by chaos theory as it stands and demands
an expansion of the basic theory to incorporate spatial dependencies. Here we shall
refer only to the onset of turbulence. Our approach is essentially a computational

exploration and illustration.

1. Survey of the problem

For more than a hundred years, many outstanding physicists have grappled with the

precision turbulent behaviour.

THE ROYAL A
SOCIETY /3%

problem of turbulence and with the cause for the instability of flows. And yet
turbulence continues, for all the formidable mathematical apparatus invested in its
exploration, to be a fundamentally open problem in physics; we still lack convincing
physical models and associated computational schemes to predict with technical

From its initiation, the philosophical framework of the chaos theory intrigued and
inspired many scientists and nourished their hope that it might finally prove
conducive to an understanding and a numerical solution of the problem of
turbulence. Irregular behaviour based on a few deterministic equations displays

many characteristics also observed in turbulent flows, for example the sensitive
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dependence on small disturbances, the fundamental impossibility of long-term
prognoses and the (statistically) self-similar structures as demonstrated by the
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208 J. Argyris, G. Faust and M. Haase

(b)

Figure 1. von Karman vortex street, stretching and folding (cf. Bergé et al. 1984).

hierarchies of eddies in a fully developed turbulence (Kolmogorov 1941). It proves
helpful to classify the unsolved questions on turbulent flow under two headings,
namely :

(a) the onset of turbulence; and

(b) the processes in a fully developed turbulence.

Promising and technically relevant answers have been established, at least in part,
only for point (a).

Fully developed turbulent flows are not only characterised by temporally irregular
behaviour but also by spatially disordered vorticial patterns on a broad spectrum of
scales; both the temporal and spatial correlations extend, however, only over a short
range. The less viscid the fluid under observation is, the smaller the smallest vortex
becomes. Consequently, in a fully developed turbulence, a very large number of
degrees of freedom (independent modes) must be considered (Grossmann 1990).

In the current chaos theory, however, it is tacitly assumed that the underlying
phase space is of a relatively low dimension. In the following, we present a series of
scenarios and mathematical models which lead to the development of chaotic,
temporally irregular motions. On the other hand, spatial dependences in the
underlying equations are not taken into account. Although the greater part of the
questions on a fully turbulent flow thus remains unanswered, many of us believe
that — particularly due to the universal character of some transitions —we can
discern first signs which may lead in future to a deeper comprehension of complex
processes such as turbulence.

Before we present the individual routes to chaos, we first refer to the fundamental
phenomenon of mixing in turbulent motions. Figure 1 shows the development of a
von Karman vortex street in the wake of a cylinder in an oncoming flow. The two
photos clearly demonstrate the generation of the vortex pairs as a result of repeated
stretching and folding of the flow lines. Interestingly, this is a mechanism we observe
in the case of the Lorenz attractor when investigating the divergence of neighbouring
trajectories. Although the actual stretching and folding does not take place in the
physical space but in the phase space, the figure does impart an understanding of
mixing and the sensitive dependence of the trajectories on small disturbances.

In 1976, the French astronomer and physicist, M. Hénon, considered two-

Phil. Trans. R. Soc. Lond. A (1993)
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Figure 2. The three basic operatlons of the Hénon mappmg of (1). The original domain (a) is
b) folded, (¢) contracted and (d) mirrored.

AT

Figure 4. Rayleigh—Bénard experiment: layer of fluid between two plates subject to a temperature
difference AT. An increase of AT leads to the transition from pure heat conduction to convection
rolls.

dimensional recursion formulae in order to gain better insight into the microstructure
of strange attractors (Hénon 1976). To this purpose, he analysed the mapping rule

Lpt1 = 1+yn_ax3u Yn1 = ﬂxn’ (1)

where each individual mapping step incorporates the three operations: folding,
contracting and mirroring (figure 2). Continuous application of this sequence causes
a total mixing of the initial points on the attractor (see figure 3, plate 1, for a = 1.4,
B = 0.3), a typical characteristic of turbulent flows and fundamental prerequisite for
the unpredictability of the motion.

The discrete recursion formula (1) may be viewed as a Poincaré map of a
continuous system and reproduces a long-term analysis of an evolutionary process,
using sequential (stroboscopic) spot checks.

Let us illuminate the scene with a characteristic illustration of phenomena
occurring in purely temporal processes. At the beginning of the 1960s, the
meteorologist Edward N. Lorenz developed a highly simplified weather model
(Lorenz 1963) on the basis of the Rayleigh—-Bénard experiment (figure 4). This model
demonstrated that even only three ordinary nonlinear differential equations can
cause aperiodic chaotic behaviour and that thus, long-term weather forecasts are
impossible on principle. To solve the set of partial differential equations describing
the convective flow, Lorenz developed the temperature and velocity fields in Fourier
series, taking only three modes, one stable and two unstable, into account. This led
to the aforementioned system of three ordinary, nonlinear coupled differential
equations, the Lorenz system

X=—0X+0Y, Y=rX-Y—-XZ, Z=—-bZ+XY. (2)
Here, the X-mode describes the flow field, ¥ and Z define changes in the horizontal
Phil. Trans. R. Soc. Lond. A (1993)


http://rsta.royalsocietypublishing.org/

e

A \
\\ \\
p

/

LY
{

A

P\

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL A
L2

SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org
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and vertical directions of the temperature field, o is the Prandtl number, b
characterizes the geometry of the convection rolls and r is the relative Rayleigh
number which is proportional to the applied temperature difference AT. Lorenz
realized that for o =10, » =28, b =8/3 the slightest deviations in the initial
conditions lead to great differences in the long-term behaviour. Then, trajectories
which are originally neighbouring deviate from each other exponentially. Never-
theless, for all the disorderliness of the trajectories, these form in the long-term a
strange attractor within a limited domain of the phase space, the Lorenz attractor.
Lorenz’s model may have been criticized justly for not providing a perfect model for
the Bénard-convection problem. However, it illustrates with remarkable intensity
the development of chaotic solutions in nonlinear differential equations.

Figure 5, plate 2, illustrates some characteristics of the strange attractor using the
Lorenz attractor as an example. Figure 5a, b demonstrates irregular behaviour: the
trajectory jumps in a stochastic, unpredictable way from one branch of the attractor
to the other; each jump is portrayed graphically by a change of colour. Figure 5¢
shows the characteristic of attraction on the basis of two different initial conditions:
following a transient phase, all the orbits are attracted to a bounded domain of the
phase space. Figure 5d illustrates the sensitive dependence on the initial conditions:
two orbits, one red and one blue, with initial conditions deviating only minimally
from one another, diverge exponentially after some time. These illustrations show
that in spite of locally chaotic behaviour, there are coherences in the phase space
which generate a global geometrical structure, an expression of the underlying
deterministic laws.

Figure 6, plate 2, again demonstrates impressively the divergence of neighbouring
trajectories causing ultimately a mixing and spreading over the attractor. In fact,
15000 initial conditions are chosen on one minute line segment and the associated
trajectories calculated and recorded stroboscopically. At first, the line segment
stretches to a long line, which is elongated repeatedly, folded back and finally spread
out as a cloud over the whole attractor. Each measurement, however precise it may
be, contains small errors. Chaotic systems magnify these microscopic fluctuations
exponentially to such an extent that after a finite period of time, they become visible
on a macroscopic scale.

We now reconsider the solution of the Lorenz equation (2) and offer a computer
generated evolution of the solution as a function of the relative Rayleigh parameter r.

Because of the complexity of phenomena in the phase space we begin with a short
overview. In particular, we present in figure 7 the development of various attractor
and bifurcation types for the parametric values o = 10 and b = 8/3 (Sparrow 1982;
Guckenheimer & Holmes 1983).

For 0 <r <1, we recognize only one single fixed point placed at the origin. The
eigenvalues of the linearized flow at this fixed point are

Ae = o+ )V (o + 1) +4(r—1) 0], Ay =—b. 3)

All three eigenvalues in this 7-range possess negative real parts, the origin is thus a
stable node. For increasing r, the real part of one eigenvalue becomes zero for r = 1;
the others remain negative. We observe a classic example of a pitchfork bifurcation.
The newly developing states of equilibrium C,, C; for r > 1 possess the coordinates
{£VI[b(r—1)], £/[b(r—1)],(r—1)} in the phase space. The characteristic equation
for their eigenvalues in the linearized system is

A+ X(o+b+ 1)+ A(o+7)b+20b(r—1) = 0. (4)
Phil. Trans. R. Soc. Lond. A (1993)
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3 fixed points : O,C,C2
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{0 0 0}
stable node
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Figure 7. Lorenz system for o = 10, b = 8/3 and a variable 7. (a) Bifurcation diagram.
(b) Evolution of fixed points.

global
sub-critical Hopf bifurcation

All three eigenvalues are real and negative for r < 1.346..., i.e. the fixed points C},
C, are stable nodes. For » = 1.346..., two eigenvalues coalesce and emerge for
increasing r as pairwise conjugate complex values. The attractor type is transformed
from a stable node to a stable focus. As the pitchfork bifurcation evolves the origin
is seen to become at r = 1 unstable in one direction and retains its saddle node
character for all » > 1.

We now concentrate on the flow in the range 1.346... <r < 13.926.... The
eigenvalue constellation at the origin —Re(A;), Re(A,) <0 and Re(A;) >0-
conditions a two-dimensional stable and a one-dimensional unstable manifold (see
figure 8, plate 3). If we trace the unstable manifold of the origin numerically, we
observe that the associated flow is captured by the two foci C; and C,. The question
is: how does the two-dimensional stable manifold at the origin evolve respectively
where do the trajectories that form the stable manifold of the origin come from. The
upper four illustrations of figure 8, plate 4, demonstrate the development of
the stable manifold. To analyse it numerically we reverse the time-history of the

Phil. Trans. R. Soc. Lond. A (1993)
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Figure 11. Two homoclinic orbits at the origin (Wiggins 1988).

trajectories which shape this surface by proceeding in a negative ¢-direction. In this
case, the trajectories describe a surface that can be viewed in a good approximation
as the exact one. To pursue the twistings of the surfaces in the phase space more
clearly, the front of the surface is coloured red and the back blue.

The coloured illustrations of figure 8 show that the stable manifold spreads
between the two unstable branches around the positive Z-axis and then twists itself
around the two loops generated by the two foci. As the surface embraces the loops
around C; and C,, it returns to the origin, with one difference, that the red front
becomes the reverse side, and the blue back takes the place of the front. Since
trajectories in the phase space cannot intersect for reasons of uniqueness (Cauchy),
the blue surface following its return to the origin can only continue to its progress by
a downward folding action. If we follow the flow emanating from a number of initial
points either on the blue or on the red side, we obtain the required information on
the respective basins of attraction of C, and C,: trajectories with initial points in the
blue domain always end in the left focus, initial points in the red domain in the right
focus. The spiral loops of the unstable manifolds which unwind in very close twists
around C; and C, for r-values just above 1 are seen to expand continuously with
increasing r. At the parameter value r = 13.926..., we observe that the respective
branches of the unstable manifold return to the origin as stable manifolds. In this
case, when the trajectory progresses to the same point for ¢ >— oo and t—>+ 00, we
speak of a homoclinic orbit. Figure 11 shows two homoclinic orbits at the origin. A
further increase of r —the real parts of the eigenvalues display no zero passage —
causes a surprising escaping action of the trajectories emanating from the right to the
left fixed point and of those emanating from the left to the right fixed point (see
figure 9, plate 4). This significant alteration of the orbital structure due to the
parameter alteration in r is a typical example of a global bifurcation (Wiggins 1988).

We next inquire into the paths the trajectories forming the stable manifold at the
origin adopt in this new, highly complex situation. The first four illustrations of
figure 9 demonstrate this development for » = 15 > 13.926.... The surface unfolds as
in figure 8 with one difference: the surface on its return to the origin is unable to fold
downwards since this passage is barred by the unstable trajectories. The rule of figure
8 that all initial points on the red hemisphere move to the right focus and all blue
ones to the left focus is now no longer true for all initial conditions.

Anincrease of r tor = 470/19 = 24.74 ..., leads to the sub-critical Hopf bifurcation
shown in figure 7. The fact that a strange attractor, the Lorenz attractor, is formed
around and in association with the unstable fixed points €, and C, for » > 24.74 ...,
is the really surprising result of the Lorenz system.

Having discussed some typical characteristics of the Lorenz attractor we attempt

Phil. Trans. R. Soc. Lond. A (1993)
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here to elucidate the geometry of this exotic structure which represents a hybrid
form between a surface and a spatial object (see figure 10, plate 4). We remember
that in the chaotic domain (figure 5), the left and the right branches of the unstable
manifold of the origin spiral unstably around C; and C, and jump unpredictably and
without warning from left to right and back again. The stable two-dimensional
manifold at the origin now has to wind its way through this chaotic intricacy of lines.
The mille-feuille-like structure can be clearly recognized in the phase space. We know
that the mille feuille layers lie infinitely close to one another; this means that a
division into blue and red spatial realms becomes practically impossible. In this sea
of uncertainty an initial point cannot decide if its allegiance belongs to the red or blue
fractions. This local indecisiveness of the stable manifold within the realm of a
strange attractor is a further —here narrated in a more geometrical context—
characteristic of a local unpredictability of this type of attractor.

The great British scientist Osborne Reynolds realized as long as a hundred years
ago that the Navier-Stokes equations contain only one essential control parameter,
namely the Reynolds number Re, which determines the character of the fluid flow.
In the case of a small Re, the flow is laminar; if the Re is increased, turbulent
behaviour sets in from a critical Reynolds number onwards at least so intermittently.
Indeed, nowadays we suspect that the standard Navier—Stokes equations, as
Heisenberg first conjectured, do not include all ingredients to interpret all aspects of
turbulence.

One of the important tasks of the theory of dynamical systems is to establish
ordering principles for the multitude of transitions from stationary to chaotic
behaviour when one or more control parameters are varied; further, to construe
theoretical models of instability hierarchies which explain the individual routes to
chaos qualitatively and can be verified quantitatively by experiment. It is easy to
comprehend the complexity of this task if one recollects that even for a single control
parameter the local bifurcations of states of equilibrium alone can be divided into
four categories having different normal forms and different characteristics of
symmetry. Hence, it is obvious that there cannot only be one single scenario
describing the transition from regular to chaotic behaviour, but that a series of
alternative mathematical models have to be considered. Which route a particular
system will follow is not yet evident on the basis of present findings, but it certainly
depends on inherent symmetries and conservation rules in the physical domain of the
system.

We continue our description on the onset of turbulence with a short survey of
instability hierarchies appertaining to local bifurcations as proposed by a number of
scientists.

Limitation of space precludes the exploration of other important transitions to
chaos arising through global bifurcations. An increase of the controlling system
parameter may also generate a qualitative change in the topological characteristics
of the invariant manifolds leading to a radically different response. The Lorenz
system is a representative model displaying the significance of global inquiries
necessary for a comprehension of the cause of chaotic behaviour. In this example the
sub-critical Hopf bifurcation at r = 24.74 (see figure 7) is almost irrelevant to the
formation of the strange attractor. There is rather a variety of striking global
changes, specifically homoclinic and heteroclinic bifurcations, in the parameter range
of 1 <7< 24.74 between the local bifurcations of fixed points leading to chaotic
dynamics (for details see Sparrow 1982; Guckenheimer & Holmes 1983). (We

Phil. Trans. R. Soc. Lond. A (1993)
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(Hopf) (Hopf) (Hopf) (Hopf)
Figure 12. Landau’s turbulence model.

gratefully acknowledge the comment of a referee stressing the significance of the role
global bifurcations play for the onset of chaos.)

2. Routes to chaos

We now survey some pertinent routes to chaos.

(a) Landaw’s route to chaos

One of the first mathematical models that offered a description of the transition
from laminar to turbulent flow was developed by the distinguished Russian physicist
Lev Landau (1944). He assumed that a steady increase of the Reynolds number
which plays the role of a free control parameter x leads to an infinite sequence of
instabilities: if the initial stationary state which corresponds to a fixed point in the
phase space becomes unstable, then a Hopf bifurcation (Hopf 1942) occurs resulting
in a limit cycle, i.e. a periodic motion with a frequency f;. Following a further
increase of u, the limit cycle also becomes unstable and undergoes a bifurcation into
a two-dimensional torus; this entails the emergence of a second incommensurable
frequency f, and a quasi-periodic motion. Landau now assumed that a further
increase in the control parameter leads to a series of generalized Hopf bifurcations
with a continuously increasing number of incommensurable frequencies (figure 12)
and that turbulent behaviour ultimately consists of complex quasi-periodic motions
on an co-dimensional torus.

The deficiencies of Landau’s turbulence model did not emerge until the 1970s when
the chaos theory was conceived. Quasi-periodic motions on a torus do not in fact
react sensitively to small disturbances in the initial conditions and do not entail
mixing in the phase space, two characteristic features of turbulent flow.

(b) Ruelle—Takens scenario

Without being aware of Edward Lorenz’s work, which had appeared in a special
meteorological journal, Ruelle & Takens (1971) conceived a completely different
scenario. The theory does not content itself with finding solutions as the Landau
scenario does but explores also with the support of qualitative dynamics the nature
of solutions, in particular, if they are stable and in addition generic. The concept
‘generic’ is often used in mathematics nowadays and refers to typical characteristics
that are the rule and not the exception. Ruelle & Takens proved that Landau’s idea
of a transition to turbulence after a cascade of so many Hopf bifurcations was highly
untypical and that even a motion on a three-dimensional torus becomes unstable in
the generic case. They showed that typically, a strange attractor emerged immediately
after the third bifurcation. This strange attractor does, however, have a different
evolution history to that of the Lorenz attractor shown in figure 7. In contrast to
Landau’s scenario, only a small number of degrees of freedom are sufficient to
describe chaotic behaviour. Figure 13 presents the Ruelle-Takens scenario.

Phil. Trans. R. Soc. Lond. A (1993)
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Figure 5. Lorenz attractor for r = 28, o = 10, b = 8/3. (a), (b)
Unpredictable jumps, (c) basin of attraction, (d) sensitive
dependence upon initial conditions.

Figure 6. Divergence of neighbouring trajectories.
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Figure 8. Evolution of the stable manifold (surface) and the unstable
manifold (line) appertaining to a fixed point in the origin (r = 12).
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Figure 9. Evolution of the stable manifold (surface) and the unstable
manifold (line) appertaining to a fixed point in the origin (r = 15).

Figure 10. Lorenz attractor (r = 28).
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r=330 r=233
r=216 r=215
r=204 r=202

Figure 22. Lorenz system: co-existence of two attractors and inverse
cascade of period doublings.
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Figure 23. Bifurcation diagram of the Poincaré sections of the
Lorenz system for 25 < r < 325.

Figure 26. Lyapunov exponent o ({2, K) for the circle mapping
O=N2=<1,0=sK=<10).
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3D-torus
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(Hopf) (Hopf)
Figure 13. Ruelle-Takens scenario.
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Figure 14. Experiment of Swinney & Gollub (1978): power spectra for
the Rayleigh-Bénard convection.

It proved possible to confirm Ruelle & Takens’ theory experimentally by means of
highly sensitive measuring devices such as the laser-Doppler technique. For this
purpose, flow experiments had to be conceived where the boundary conditions
impose a freezing of the spatial structure, thus activating only a small number of
spatial modes and conditioning an onset of turbulence due to purely temporal
processes.

The first experiment allowing a sufficiently precise observation of the transition to
turbulent behaviour according to Ruelle-Takens was carried out by Gollub &
Swinney (1975) for the Taylor—Couette flow and for the Rayleigh—Bénard convection
(Swinney & Gollub 1978). Application of the power spectral method for increasing
relative Rayleigh numbers R, recorded in figure 14, shows (a) a periodic oscillation
of the convection rolls with a fundamental frequency f,, (b) a quasi-periodic motion
with two incommensurable fundamental frequencies f, and f, (the power spectrum
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(period T)  (period 2T)  (period 47T')

1D periodic orbit
Figure 15. Feigenbaum’s scenario: via period doublings to chaos.

shows sharp peaks for f, and f, and their linear combinations) and (c) a broad band
spectrum with some sharp peaks which indicate the emergence of a chaotic motion.
A first interpretation of the power spectra may make us believe, of course, that very
many active modes are generating the irregular motion. Application of the Packard
and Taken’s reconstruction technique (Packard et al. 1980; Takens 1981) shows,
however, a strange attractor of the correlation dimension D, =~ 2.8 (Hentschel &
Procaccia 1983). This could be deduced from the time history response (Malraison
et al. 1983) and confirms that the transition is identical with Ruelle and Takens’
scenario. Immediately after the third Hopf bifurcation, chaos sets in.

(¢) The period doubling cascade: Feigenbaum’s route to chaos

In many experiments, it can be observed that an increase in the system parameter
4 beyond the second generalized Hopf bifurcation on the two-dimensional torus is
followed by a synchronization (locking) of the two incommensurable frequencies so
that the quasi-periodic behaviour is succeeded by a periodic motion. The limit cycle
which thus emerges also becomes in its turn unstable following an increase of x4 and
undergoes a flip bifurcation which results in period doubling. The new limit cycle
then goes through a cascade of period doublings until chaos sets in (see the schematic
illustration in figure 15). In his work at the end of the 1970s, the American physicist
M. Feigenbaum (1979¢a) succeeded in discovering the universal character of this
transition by establishing a link with more general second-order phase transitions.
Such a continuous phase transition is displayed by ferromagnets, for example, which
lose their permanent magnetization above a critical temperature, the so-called Curie
temperature. At the end of the 1960s and beginning of the 1970s, Kenneth Wilson
(1971) succeeded in developing an explicit formulation of the renormalization group
theory which made possible a quantitative determination of the critical exponents
which define the phase transition; this led to a classification of a whole series of
second-order phase transitions in categories of universality (for an introductory work
see Lipowsky 1983). Inspired by the renormalization group theory, Feigenbaum
studied the transition to chaos in a very simple nonlinear mapping rule which had
already been used to describe biological populations (May 1976)

x> flx) = ax(l—2x). (5)

For 0 < a < 4, the unit interval / = [0, 1] is mapped into itself. In spite of the simple
set-up of this iteration rule z,,, = f(x,), the long-term behaviour of the sequence {z,}
varies for n - 00 dramatically in dependence on the control parameter c.
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The fixed points of the map are x = 0 and x = 1—1/a. For 0 < a < 1, it suffices to
consider only the stable fixed point x = 0 in this a-range. The stability of this fixed
point is reversed for o« =1 and the point becomes unstable. A transcritical
bifurcation takes place; the formerly unstable fixed point x = 1 —1/a becomes stable
and advances into the unit interval I (figure 16a). Following a further increase of «,
this state of equilibrium also loses its stability; for «, = 3, a flip bifurcation takes
place and a 2-cycle emerges, i.e. a periodic motion (figure 16b). Increasing o up to a
2nd critical value a = a,, the motion becomes once more unstable and a period
doubling occurs (figure 16¢).

Further incrementation of « leads to a whole cascade of period doublings until
finally, when a critical value a is attained, chaotic behaviour sets in (figure 16d).

In figure 17a, we present the bifurcation diagram, i.e. the long-term behaviour in
dependence of o for the logistic mapping, and underneath, in figure 175, the
corresponding Lyapunov exponent o which is a measure of the stability of the
motion. At the critical points o, where period doublings occur, o vanishes as to be
expected. Between two sequential critical values a,, and a,, lies a value 4, for which
the motion on a cycle of the period 2% is superstable, i.e. (f2) = 0 applies at all cycle
points. At these points, the theoretical value of the Lyapunov exponent is 0 = — o0
numerically, a large but finite negative value is obtained. For & > a,, chaotic motion
sets in, reflected in positive values of o. This irregular behaviour is continuously
interrupted by periodic windows, i.e. by a-ranges in which cycles of the period m (m e
N) occur and which in turn again progress into chaos via period doubling cascades.

The bifurcation diagram is self-similar with regard to both the variable x and the
control parameter o : each new branch reproduces the whole course on a smaller scale.
This behaviour is denoted as a self-similarity. Feigenbaum’s numerical studies
(1979a) showed the following.

1. The distances between successive bifurcation points satisfy a rule of a
geometrical progression

lim ZE1 — % _ 5 (6)

koo %pre ™ Fpptt
2. The distance d, of the specific point in the superstable 2¥-cycle which lies
nearest to x =1 (figure 17a) also decreases geometrically. Noting the standard
directional convention for the sign of the distance d, we have

lim dd" =—a. (7)
k-0 “Ek+1
Applying the renormalization technique, Feigenbaum succeeded in decoding the
self-similar structure of the bifurcation diagram, i.e. in determining the values of a
and ¢ theoretically. It is possible to comprehend the mechanism of period doubling
if one observes a 2*-fold iterate (k = 1,2,...) of the initial function f(x). Feigenbaum
introduced an iteration operator 7* which, if applied on a function f(x), e.g. the
logistic expression, generates an iteration step involving a shift of the system
parameter o and a simultaneous scaling. In this way we obtain for £ > 1

T*fa (@) ~ —afy,, (—x/a). (8)
Here, the index A4, represents the current value of a in (5). The interpretation of the

operator 7T'* is shown schematically in figure 18. An n-fold application of the operator
T* to the series of functions f,,f, ..., generates for n—>o00 a series of limiting
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Figure 16. Iteration of the logistic mapping #,,, = ax,(1 —=,): (a) @ = 2.8, fixed point;
(b) a = 3.3, periodic motion; (¢) a = 3.48, period doubling; (d) & = 3.9, chaos.

(a)

In

0.5 ........... X

-1.8 a

a A a2 Az o ;
Figure 17. Bifurcation diagram and Lyapunov exponent for the logistic mapping.
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T‘
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! \Q\dn+l acali!lg
|
i |
i D
iteration
Figure 18. Schematic representation of the operator 7.

functions g¢,,¢,.... The crucial point here is that for each i =1,2..., the rescaled
iterates fﬁ;;ﬂ converge for n-> o0 in the neighbourhood of the central extremum to a
function g,(z). These limiting functions fulfil via a doubling transformation 7' the
condition ala) = Tyle) = = aglg — /). )
In fact, T operates on a function space and leads within this space to a ‘fixed point’
g(x), i.e. a universal function which reproduces itself following a doubling

transformation g(x) = Tg(x) = —ag(g(—x/a)). (10)

This characterizes a transition to chaos. A specification of the maximum of f and
hence ¢ yields by application of (10) the Feigenbaum constant a as well as the Taylor
approximation of g(z). As in the linear stability analysis, it is also possible here to
specify the nature of the stability of this ‘fixed point’; in the present case, however,
functions take on the role of points in the phase space and the operator 7' the role of
a functional instruction. It transpires that g(z) corresponds to a saddle-point and the
Feigenbaum constant & defines the positive eigenvalue of the linearized operator 7' at
the point g(x) in the direction of the unstable manifold W*.

At this stage we should be reminded that the calculations depend only on the
nature of the maximum of the mapping function f(x) and not on the details of its
functional variation. In particular, for quadratic maxima as is the case for the
logistic map, the two Feigenbaum constants are given by

a = 2.50290787... (11)
and 0 =4.66920166.... (12)

These constants possess universal character in the sense that their values do not
derive from the details of the underlying dynamical system but only from the order
of the maximum of its Poincaré mapping. Period doubling transitions could indeed
be observed and quantitatively confirmed in such differing systems as electrical
circuits (van Buskirk & Jeffries 1985), population dynamics (May 1976) and
convective flows.

In 1978, Libchaber & Maurer began a series of experiments investigating the
generation of turbulence in Rayleigh-Bénard cells of liquid helium. The ingenious
way they set up their experiment and the highly sensitive measuring devices used

Phil. Trans. R. Soc. Lond. A (1993)
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Figure 19. Frequency locking in the Rayleigh-Bénard experiment (Maurer & Libchaber 1979).
(@) B =2.98x10% (b) R =3.3x10%
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Figure 20. Bénard convection : period doubling cascade (a)-(c) and scaling laws (d) emerging in the
power spectrum (Libchaber & Mauer 1980; cf. Schuster 1988). (@) 40.5R,, (b) 42.7R,, (c), (d) 43R,.

enabled them to achieve extremely precise measurements. Figure 19 shows the
power spectra appertaining to two Rayleigh numbers taken from their work. The
line spectrum in figure 19a reproduces a quasi-periodic motion with the two
incommensurable fundamental frequencies f, and f, as well as their linear
combinations. An increase in the temperature difference leading to a Rayleigh
number of B = 3.3 % 10* yields a frequency locking with f,/f, = 7, i.e. a periodic
motion.

In Libchaber’s experiments, the velocities were measured with such high precision
that it proved possible to confirm Feigenbaum’s route to chaos via period doublings
quantitatively as well. Figure 20 presents a series of power spectra for increasing
Rayleigh numbers. It can be seen from the line spectra that the subharmonics f, /2,
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Figure 21. Scaling laws of the superstable cycles and the power spectra
for the logistic mapping.

fi/4, fi/8, f1/16 as well as their odd multiples emerge and join the fundamental
frequency one after the other. Moreover, the power spectra obey quite special scaling
laws which can be unveiled with the aid of the renormalization technique. From
figure 20d it can be seen that the amplitudes of the subharmonic contributions which
emerge sequentially at each period doubling decrease on average by a factor pu™;
according to an estimate of Feigenbaum (1979b), 4 can be deduced from the
Feigenbaum constant a,
4a

B= 200+ 1/a?)]

In figure 21, we present the corresponding power spectra for the logistic mapping.
The scaling of the power spectra results from the banded structure of the 2¥-cycles.
A typical Feigenbaum transition from chaos via an inverse cascade of period halving
to a single-periodic limit cycle can also be observed in the case of the Lorenz system
(2) for o = 10, b = 8/3 and relative Rayleigh numbers » > 202. Figure 22, plate 5,
presents phase portraits in the range 330 > r > 202 for decreasing r-values. For r =
330, one periodic limit cycle exists which splits into two single-periodic attractors
with separate basins of attraction at » = 233. These then pass through a cascade of

~ 6.57. (13)
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Figure 24. Quasi-periodic motion on a two-dimensional torus with irrational frequency ratio (a)
and Poincaré section (b).

period doublings: for » = 216, the period 4 can be seen, for example, and for » = 215,
period 8. Another reduction of the control parameter » leads to further period
doublings in continually decreasing intervals until finally, for » = 202, two separate
strange attractors appear; interestingly enough, the presence of two strange
attractors was not observed before.

The universality of this transition emerges particularly clearly if we plot in
dependence of r the Poincaré sections of the Lorenz system generated by cuts with
the plane X = 0 (see plate 6, figure 23). We obtain a bifurcation diagram which is
astonishingly similar to that of the logistic mapping figure 17a.

(d) Quasi-periodic transition

Rand et al. (1982) and Shenker (1982), working independently of one another,
explored a further transition to chaos. The experimental observations of Gollub &
Swinney, for example (figure 14), suggested that there occurs also a direct transition
from quasi-periodic to irregular motion. Both groups asked themselves to what
extent this transition, like Feigenbaum’s period doubling cascade, possesses universal
scaling laws. Theoretical investigations based on a simple mapping procedure
demonstrated that in this model, the quasi-periodic route to chaos is complementary
to Feigenbaum’s scenario.

A quasi-periodic motion with two incommensurable frequencies f; and f, has its
equivalent in the phase space in a trajectory on a two-dimensional torus (figure 24 a)
which does not possess a closed path and consequently covers the torus completely.
To study the transition to chaos, it is expedient to consider a Poincaré section of the
torus (figure 24b). In this way, the motion on the torus can be modelled by a simple
circle map

O0—f(0) = 0+ Q2 —(K/2m)sin (2n0) (mod 1), (14)
where K and Q are control parameters. The parameter K determines the strength of
the nonlinearity of the mapping 0,., = f(6,). If the nonlinear term vanishes (K = 0),
Q2=20,,,—0,=f,/fi measures the phase shift after one orbit and represents a
winding number (figure 140). If Q = p/q is rational, the trajectory closes after ¢
orbits and the motion is periodic. Irrational ratios £ = f,/f, lead to quasi-periodic
motions. In the presence of a nonlinear term (K/2m)sin (2n6,,), the winding number
W is defined as the long-term average revolution per iteration

WK, Q) = lim 6”;:60. (15)

Nn—>00

For fixed values K,(0 < K, < 1), periodic motions with a rational winding number
are stable over a whole £2-range. The stable domains of these periodic motions in the
(2, K)-plane in which frequency locking occurs (i.e. Q-intervals where |f’(K,, Q)| < 1
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0 1 1 1 2 3 1 Q

Y 3 2 3 4
Figure 25. Arnol’d tongues of the circle mapping.

applies) are called Arnol’d tongues (shaded areas in figure 25) (Arnol’d 1965). At
every rational value on the -axis, such a periodic window emerges and expands with
increasing K. Although there are enumerably infinite resonance horns of this sort
with W = p/q, they shrink with increasing q so fast that they leave space for quasi-
periodic motions. With growing nonlinearity K, however, the probability that
frequency locking will occur becomes greater and greater. The value K = 1 represents
a critical boundary beyond which the circle map is no longer invertible and highly
complex long-term behaviour takes place.

In figure 26, plate 6, we plot the Lyapunov exponent o for the circle map in
dependence on the two control parameters Q and K. Different colours characterize
varying long-term behaviour patterns. For negative o-values, black was chosen: this
corresponds to periodic motions respectively fixed points in the Poincaré map. Below
the critical boundary K = 1, the black Arnol’d tongues can be seen against a dark red
background which represents quasi-periodic behaviour (o = 0). Beyond the critical
boundary, the Arnol’d tongues can overlap. For K-values just beyond 1, the finest
tongues overlap first; the broader ones follow for larger K-values. If two Arnol’d
tongues with the winding number p/q and p’/q” overlap, the winding number in this
(K, £)-range is no longer uniquely determined, i.e. depending on the initial condition
the orbits are captured by different attractors. Indeed, in this overlap range, there
are still infinitely many other Arnol’d tongues with the rational winding numbers
p/qg< W <p’'/q, ie. there exists an interval of winding numbers.

This representation of the Lyapunov exponent demonstrates that the dynamic
behaviour of the circle map becomes increasingly more complex for increasing K-
values. Under such conditions, chaotic domains having o > 0 can emerge which are
depicted in the colours blue-yellow ; they in turn are closely interwoven with periodic
domains.

In this illustration, the self-similar structure of the Arnol’d tongues can be clearly
recognized. Along the line K = 1, the Q-intervals outside the Arnol’d tongues —in
which no frequency locking, but quasi-periodic response occurs — form a Cantor set.
This suggests a universal scaling law for circle maps at the transition to chaos.

Using the Lyapunov exponents, we can also resolve the detailed structure within
the Arnol’d tongues. In figure 27, we show the long-term behaviour of 6,(K) (for
6, =0.2) and underneath, the corresponding Lyapunov exponents o(K). A clear
similarity to the bifurcation scheme of the logistic map can be observed (figure 17)
(0,, here corresponds to x,, K to the parameter a). Within the Arnol’d tongues, a
route leads evidently to chaos via a cascade of period doublings.
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Figure 27. Circle mapping: (a) bifurcation diagram and (b) Lyapunov exponent within the
Arnol’d tongue W =1 for Q =

1

While for 0 < K < 1, a whole Q-range for which the periodic motion is stable
appertains to each rational winding number, only a single Q-value belongs to each
irrational winding number. Thus, to discern the direct transition from quasi-periodic
behaviour with a fixed winding number to chaos — which is what we are interested in
here — two control parameters have evidently to be matched. An increase of the
nonlinear coupling, modelled by K, must always be balanced by a shift in Q in order
to exclude a penetration into the Arnol’d tongues (figure 25).

In a series of publications (Rand et al. 1982; Ostlund ef al. 1983 ; Feigenbaum et al.
1982 ; Shenker 1982) the transition to chaos was studied for a fized irrational winding
number (see figure 28). The authors discovered, as in the Feigenbaum scenario, self-
similarities that they were able to decode using the renormalization technique. As a
winding number, they chose the golden mean W, = 1(/5—1) since it can be
represented by a particularly simple continued fraction. It later transpired, also
from an experimental investigation, that the quasi-periodic transition to chaos is
best detected for this particular winding number.

Each irrational number can be represented uniquely by a continued fraction

e nnn,.. >, (16)

"+ i
n2+n n
gt ...

where the n,; are positive integers. Truncating this fraction after a finite number k of
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1
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Figure 28. Quasi-periodic transition to chaos with the golden mean W, (= 4(1/5—1)) as the winding
number: (@) determination of Q, for 0 < K < 1, (b) transition to limes K =1. W, =F,/F, .

places, we obtain a finite continued fraction which represents a rational number. The
‘degree of irrationality’ of a number can be characterized by the speed with which
the approximation with rational numbers resulting from successive truncations of
the continued fraction converges. Rand and Shenker chose the golden mean as the
winding number because of its particularly simple continued fraction representation

We=<111..>=%v/5-1). (17)

Since in this case, the approximation with rational numbers converges at its slowest,
Wi is the ‘most irrational’ of all irrational numbers. Moreover, successive
approximations W, of the golden mean are closely linked with Fibonacei’s numbers,

F,, defined b
" Y F,,,=F,+F,, with F,=0 F =1. (18)

Wn = Fn/Fn+1' (19)

As shown in path (a) of figure 28, Shenker (1982) approximated for a fixed value
0 < K, < 1 the uniquely determined value £ _ (K,) appertaining to the golden mean
W as the winding number. He considered a series of Arnol’d tongues corresponding
to the rational winding numbers W, =F,/F, , (n=1,2,...) for which a periodic
motion with F,,, cycle points can be observed. For reasons of uniqueness special
Q,-values have to be selected, for example those for which 6 = 0 belongs to the F, -
cycle. The sequence of these ,-values then tends geometrically towards the limit
Q. (K,)

In fact, we have

Qn_gn—l —

lim -2—2=
Qn+1_gn

n-—>00

—4. (20)
The distances d,, between 6 = 0 and the next cycle point also converge geometrically

lim dy =—a. (21)
n->00 dn+1

Applying a similar technique to that used for the Feigenbaum scenario, the constants
a and & can be deduced from a fixed point equation applying a suitable iteration
operator with the aid of the renormalization theory. Proceeding to the limit X -1
(path (b) in figure 28) and approaching the transition to chaos, we obtain the values

a=1288575...., ¢6=2.83362.... (22)
Phil. Trans. R. Soc. Lond. A (1993)
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Figure 29. (a) Multifractal structure of the attractor of the circle mapping for K = 1 with the
golden mean as the winding number, (b) associated f(a)-spectrum (cf. Halsey et al. 1986).
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Figure 30. Quasi-periodic transition to chaos.

As in the Feigenbaum scenario, it is important to note that these constants possess
once more universal character in the sense that they are independent of the special
form of the circle map 6,,,, = f(6,) as long as the latter satisfies only some very weak
conditions, for example in that it possesses a cubic inflection point at the critical line
K =1).

As long as K < 1, a quasi-periodic motion on a two-dimensional torus corresponds
to the circle map for irrational winding numbers. In the Poincaré section, the points
of intersection fill a complete circle uniformly. At the transition to chaotic behaviour,
however, the characteristics of this Poincaré section change suddenly. In figure 294,
we have constructed the critical attractor by iteration of the circle map for the values
K =1 and W;. Although the whole circle is gradually filled, the distribution of the
points displays a highly varying density. Since this critical attractor can also be
determined experimentally, a characterization of this distribution of density is of
interest. Specifying a single dimension so as to reproduce the density pattern of
points is certainly not expedient since such a number, as a scalar quantity, cannot
describe the inhomogeneous multifractal structure of the set of points. To circumvent
this difficulty we use the following device: we cover the attractor with intervals of
length / and calculate the probability p, with which a point falls into the ith interval

pill) = 14O (23)
In the limit /-0, the scaling index «, is identical with the point-wise dimension. If
one considers now the set of all points with the same o and determines its dimension
fla), we find that f is a universal function which is independent of the special form
of the underlying circle map (figure 29b).

Figure 30 displays schematically the quasi-periodic transition to chaos which goes
hand in hand with the disintegration of the two-dimensional torus. An increase of the
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Figure 31. Rayleigh-Bénard experiment: (a) critical attractor, (b) corresponding f(et)-spectrum for
a golden mean winding number (curve II). The left curve I shows f(e) for a transition to chaos via
period doubling for W = 8/13 (Libchaber 1987).

control parameter K causes an increase of the nonlinear term and generally leads to
a rise of the effective dimension in the long-term behaviour. Consequently, we have
modelled the disintegration of the torus by means of the two-dimensional dissipative

ircl
cirele map Opir =0,+R2—(K/2n)sin (2n0,)+br, (mod 1),1
Tpi1 = br, — (K /2m)sin (2r6,,), J (24)
where r,,6, are polar coordinates and b defines a finite rate of dissipation. The

wrinkles in the Poincaré section are symptomatic and can also be observed
experimentally (cf. figure 31a).

Working in the hydrodynamic domain and in particular on an experimental
verification of the Rayleigh—-Bénard convective flow, Jensen et al. (1985) were able to
confirm the universal scaling characteristics of the attractor at the transition from
quasi-periodic to chaotic behaviour. They used mercury as the fluid to exploit its
electrical conductivity. The temperature difference between the plates was adjusted
so that the convection rolls oscillated with a given frequency f;. To generate a second
frequency and hence a quasi-periodic motion, an electrical current sheet was passed
through the mercury ; its amplitude 4 and frequency f, served as control parameters.
In the experiment, the transition from quasi-periodic to chaotic behaviour was to be
studied for the fixed winding number W (cf. figure 28). An increase of the amplitude
A causes a more pronounced nonlinear coupling of the two oscillations and thus
corresponds to an increase of the parameter K in the circle map. To achieve in the
experiment a quasi-periodic motion with the winding number W for each fixed 4,
the ac frequency f, had to be adjusted successively in accordance with (19) so that
fo/fi = W, applies. In this way, the scaling laws (20)—(22) could be verified. Figure 31
presents the experimental results at the transition to chaos. In particular, figure 31a
shows a Poincaré section at the critical boundary. The varying density of the
distribution of the points on the attractor is clearly visible. The experimental results
yielded the f(o)-spectrum of the multifractal structure (figure 31b). The mea-
surements (indicated by dots) agree extremely well with the theoretical spectrum as
deduced for the circle map (solid line). The right curve IT applies to W; as the winding
number, the left curve I to the transition of the period doubling cascade to chaos
within an Arnol’d tongue with the winding number W = 8/13. With the help of the
f(a)-spectrum, it proves thus possible to differentiate clearly between the two routes
to chaos.

At the transition from quasi-periodic to chaotic behaviour, there occur two types
of universality.
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r=166.0

Figure 32. Lorenz system: transition to chaos via intermittency (type I) (Manneville & Pomeau
1979).

Local universality is associated with a fixed winding number W and exhibits close
similarities to the scaling behaviour of the period doubling cascade according to
Feigenbaum. As the delicate set-up of Libchaber’s test shows, however, experimental
proof of this scaling laws is difficult since the experiment involves a phase transition
in which two control parameters have to be matched so that the winding number
remains constant.

Global universality, on the other hand, encompasses a whole range of winding
numbers and is easier to observe experimentally. The global scaling laws include the
self-similar structure of the Arnol’d tongues in which periodic motion occurs; the
same observation applies to their complementary set (see figure 26). We have already
mentioned that the set of all Q-values along the critical boundary K = 1 appertaining
to quasi-periodic behaviour is a Cantor set. Its capacity dimension is a universal
quantity and the theoretical value D, & 0.87 (Jensen et al. 1983) could also be verified
experimentally.

(e) 4 route to chaos via intermittency

As a last scenario of a transition to chaos we consider here the route via
intermittency, discussed in detail by Pomeau & Manneville (1980). What is
intermittency ? Intermittency in hydrodynamics expresses that laminar behaviour is
interrupted by turbulent outbreaks at irregular intervals. In fact, spatio-temporal
intermittency is a well-known phenomenon which can be observed in boundary
layers, in pipe flows and in fully developed turbulence.

In the present theory of chaos, the concept of intermittency is restricted to purely
temporal processes; it can be confirmed experimentally at the transition from
periodic to chaotic behaviour and can also be explained theoretically.

Figure 32 shows various temporal responses of the Lorenz system (2) for an
increasing control parameter r. For » < r, ~ 166.07, the long-term behaviour in the
phase space is described by a stable limit cycle which loses its stability at »,. For r-
values just above r,, periodic behaviour can be ascertained over long periods of time;
however, it is repeatedly interrupted by chaotic outbreaks at irregular intervals.
With increasing r, the regular phases become shorter and shorter until finally,
completely irregular behaviour sets in.

Following the theory of bifurcation of fixed points in one-parameter mappings,
there are three possibilities for a loss of stability of a periodic motion respectively of
a fixed point in the corresponding Poincaré map: an eigenvalue of the mapping
matrix of the linearized system crosses the unit circle in the complex A-plane at +1,
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Figure 33. Classification of intermittency on the basis of the eigenvalues.
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Figure 34. Sub-critical saddle node bifurcation: (a) bifurcation diagram, (b) mapping function
near the bifurcation.

f(=)

Figure 35. On a laminar phase for an intermittency of type I.

or —1; alternatively, two conjugate complex eigenvalues may cross the circle (figure
33). In the same way, intermittency can be divided into three classes, types I-111I.
In the case of type I, a saddle-node bifurcation occurs, in the case of type 1I, a
Neimark—Sacker bifurcation (Hopf) and in type I1I, a flip bifurcation (Wiggins
1990); the bifurcations must be sub-critical, however, since intermittency only
occurs if the nonlinear effects lead to an increase of the instability.

In the following, we restrict ourselves to a theoretical model for the interpretation
of intermittency of type I. In this case, the Poincaré map, as seen in figure 34,
experiences a saddle-node bifurcation. Without any loss of generality, we need only
consider the normal form of this map for the sub-critical case

x—>flae,p) =x+p+a® with pu=(r—r)/r,. (25)

For r < r,, a stable and an unstable fixed point exist which merge for r = r, and
vanish for r > r,. In the case of r-values just above r,, a narrow corridor emerges
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Figure 36. Route to chaos via intermittency of type I. (a) R/R, = 300, (b) B/R, = 335.
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Figure 37. Time-history response of the vertical velocity component for various Rayleigh-Bé...d
experiments: transition to chaos via intermittency of type I (Bergé et al. 1980). (a) R/R, = 270,
(b) B/R, = 300, (¢c) R/R, = 335.

between the curve of the Poincaré map and the first angle bisector (figure 35).
Whenever an x-value approaches closely the ‘sluice’, it traverses the corridor in
many small iteration steps. In this range, the response of the motion strongly
resembles the stable periodic motion for < r, and generates a laminar phase. Once
the tunnel has been passed, an irregular outbreak with increasing amplitudes follows
until the orbit is again captured by the sluice. It is relatively easy to deduce a scaling
law for the average duration 7' of the laminar phase

T~ |r—r,| (26)

Figure 36 shows this route to chaos via an intermittency of type I. Bergé et al. (1980)
were able to prove this transition to irregular motion experimentally for the
Rayleigh-Bénard convection (figure 37).

3. Remark to the concept of universality

One of the most remarkable findings of the theory of dynamical systems is the
concept of universality which is in effect a characteristic of highly dissipative
systems. In a manner similar to that used for the classification of bifurcations into
a few normal forms, the various transitions from regular to chaotic behaviour can be
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grouped in a few scenarios, irrespective of whether the underlying dynamical system
describes the dynamics of a mechanical oscillator (Duffing 1918), an electrical circuit
(van Buskirk & Jeffries 1985), a chemical reaction, a heart rhythm, the evolution of
biological populations (May 1976) or the onset of turbulence in a Bénard cell. As a
result of a modification of one (for a direct transition from quasi-periodicity to chaos,
two) control parameter(s), nonlinear systems, which are at first not related at all,
follow one of the universal instability hierarchies this being also quantitatively
provable. Since universal behaviour does not depend on system-specific details, it is
possible to predict in this way which transition scenarios are to be expected in an
unknown complex system. Although the theory of dynamical systems is still in its
infancy both from the theoretical and the practical, numerical point of view, an
essential and certainly indispensible first step has been taken on the road to a better
comprehension of nonlinear systems.

4. Conclusions and what next?

For more than a century, research work in the engineering sciences has, in general,
been directed towards linear systems or linearized ones. In such cases, fundamentally
elementary analyses are possible and predictability is guaranteed. It is becoming
more and more apparent, however, that linear approximations are nowadays only
acceptable to a limited extent in technical and physical applications and that the
number of potential fields of application in nonlinear dynamics is growing rapidly on
account of their technical relevance.

In mechanics, for example, stability investigations of externally excited systems
are of major significance. In particular, we are confronted by complex nonlinear
problems like the anchorage of oil rigs in heavy sea, boat capsizing, the behaviour of
coupled systems such as lorry and trailer, not to forget the stability of satellites as
well as of the moons of some planets in our solar system. Also, in hydrodynamics,
stability investigations of multi-phase and convection flows are the object of lively
research.

The greatest hope physicists have been fostering since the beginning of research in
chaos is to gain a deeper physical understanding of turbulent behaviour and to
invent new associated computational devices. ‘Indeed, if one had to choose just one
“most important” area of future studies of chaos, it would have to be the
relationship between chaos and turbulence’ (Campbell 1987).

The fact that the chaos theory is by now so well established in many scientific fields
is undoubtedly based on the quantitative confirmation of its theoretical statements
by precise and delicate experiments on the onset of turbulence as carried out by
Libchaber and Maurer in experiments on the Bénard convection.

It must be admitted, however, that the limits of the current chaos theory, which
is presently centred on temporal evolutions in the dynamics of low-dimensional
systems, are gradually becoming apparent. In the aforementioned Rayleigh-Bénard
experiments, a great effort had to be applied to freeze the spatial modes. In fully
developed turbulence, however, spatially disordered structures are generated in
addition to temporal irregularities on (at least apparently so) all scales; these scales
are reflected in the spatial and temporal broad band power spectra. This entails a
drastic increase in the active degrees of freedom and thus a very high dimension of
the underlying phase space. In this sense, the standard chaos theory of today is
undoubtedly a long way from offering an understanding of fully developed
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turbulence. On the other hand, numerical and experimental investigations of weak
turbulence confirm that turbulence displays all the symptoms of the chaos syndrome
and that thus, the theory of dynamical systems seems to be an indispensible tool for
the comprehension of the initiation of turbulent motion respectively of the dynamics
of general complex systems.

What then are the next steps on the road to comprehending turbulence and
combustion, an additional complex field demanding intense research ? The strategy
will be to attain a gradual unfreezing of the spatial modes. In addition to the
bifurcation of purely temporal processes, the occurrence of spatial patterns is a result
of spatial instabilities. In open flows, for example, this leads to an increase of the
perturbations and to spatial unpredictabilities downstream. This spatial expansion
of fluctuations corresponds to a spatial transport of information and is a new
additional mechanism.

In future studies, our aim should be to achieve a reduction of the number of modes
necessary to model the fundamental characteristics — like spatio-temporal patterns
and the transport of energy, mass, concentration —to a minimum. A further
important aspect is the elucidation of the creation of self-similar structures by means
of iterative processes or hierarchies of equations.

The computer will doubtless play an important role on all investigative levels in
the search for the link between chaos and turbulence. Numerical simulations and
graphic representations of the results are indispensible aids for the recognition of the
internal constraints in dynamical processes. To explore such open problems, we hope
that the cellular automata/lattice gas automata will offer new opportunities to
simulate on the computer nonlinear dynamical processes with very many degrees of
freedom, e.g. liquids at high Reynolds numbers, and perhaps to obtain a better
physical understanding.

Thanks are extended by the authors to Harald Volz and Bernd Lehle for the exceptional standard
of their graphical contributions. The layout of the manuscript text and figures was prepared, as
usual, with immaculate precision by Christiane Reisert.
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Figure 3. Formation of the Hénon attractor: initial conditions (n = 0) assigned to four coloured
areas; complete mixing after n = 29 iterations.
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Figure 8. Evolution of the stable manifold (surface) and the unstable
manifold (line) appertaining to a fixed point in the origin (r = 12).
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Lorenz system: co-existence of two attractors and inverse

cascade of period doublings.
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igure 26. Lyapunov exponent o ({2, K) for the circle mapping
0= =1,0=K=10).


http://rsta.royalsocietypublishing.org/

